Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.223
Filtrar
1.
BMC Vet Res ; 20(1): 147, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643185

RESUMO

BACKGROUND: Gamithromycin is an effective therapy for bovine and swine respiratory diseases but not utilized for rabbits. Given its potent activity against respiratory pathogens, we sought to determine the pharmacokinetic profiles, antimicrobial activity and target pharmacokinetic/pharmacodynamic (PK/PD) exposures associated with therapeutic effect of gamithromycin against Pasteurella multocida in rabbits. RESULTS: Gamithromycin showed favorable PK properties in rabbits, including high subcutaneous bioavailability (86.7 ± 10.7%) and low plasma protein binding (18.5-31.9%). PK analysis identified a mean plasma peak concentration (Cmax) of 1.64 ± 0.86 mg/L and terminal half-life (T1/2) of 31.5 ± 5.74 h after subcutaneous injection. For P. multocida, short post-antibiotic effects (PAE) (1.1-5.3 h) and post-antibiotic sub-inhibitory concentration effects (PA-SME) (6.6-9.1 h) were observed after exposure to gamithromycin at 1 to 4× minimal inhibitory concentration (MIC). Gamithromycin demonstrated concentration-dependent bactericidal activity and the PK/PD index area under the concentration-time curve over 24 h (AUC24h)/MIC correlated well with efficacy (R2 > 0.99). The plasma AUC24h/MIC ratios of gamithromycin associated with the bacteriostatic, bactericidal and bacterial eradication against P. multocida were 15.4, 24.9 and 27.8 h in rabbits, respectively. CONCLUSIONS: Subcutaneous administration of 6 mg/kg gamithromycin reached therapeutic concentrations in rabbit plasma against P. multocida. The PK/PD ratios determined herein in combination with ex vivo activity and favorable rabbit PK indicate that gamithromycin may be used for the treatment of rabbit pasteurellosis.


Assuntos
Doenças dos Bovinos , Lagomorpha , Infecções por Pasteurella , Pasteurella multocida , Doenças dos Suínos , Coelhos , Animais , Bovinos , Suínos , Antibacterianos/uso terapêutico , Antibacterianos/farmacocinética , Infecções por Pasteurella/tratamento farmacológico , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/microbiologia , Macrolídeos/uso terapêutico , Macrolídeos/farmacocinética , Testes de Sensibilidade Microbiana/veterinária , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Suínos/tratamento farmacológico
2.
ScientificWorldJournal ; 2024: 5605552, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655561

RESUMO

Background: Pasteurella species are frequently encountered as serious diseases in small ruminants. It is the main cause of respiratory pasteurellosis in sheep and goats of all age groups. Methods: The cross-sectional study was conducted from December 2022 to April 2023 in Haramaya district, eastern Ethiopia, to isolate and identify Pasteurella multocida and Mannheimia haemolytica and estimate their prevalence, associated risk factors, and antimicrobial sensitivity of isolates in small ruminants using a purposive sampling method. A total of 384 samples (156 nasal swabs from clinic cases and 228 lung swabs from abattoir cases) were collected. STATA 14 software was used to analyze the data. In addition, multivariable logistic regression analysis was performed to assess an association of risk factors. Results: Out of the 384 samples examined, 164 were positive for pasteurellosis, resulting in a 42.70% prevalence. Similarly, 63 (38.4%) of the 164 positive results were from nasal swabs, while 101 (61.6%) came from lung samples. M. haemolytica accounted for 126 (76.82%) of the isolates, while P. multocida accounted for 38 (23.17%). Of the 63 nasal swab isolates, 33 (37%) were from goats and 30 (42.8%) were from sheep. And 17 (10.89%) and 46 (29.58%), respectively, were P. multocida and M. haemolytica. Of the 46 (40%) of the 101 (44.3%) isolates of the pneumonic lung, samples were from goats, while 55 (48.47%) were from sheep. In this study, the risk factors (species, age, and body condition score) were found to be significant (p < 0.05). Pasteurella isolates evaluated for antibiotic susceptibility were highly resistant to oxacillin (90.90%), followed by gentamycin (72.72%), and penicillin (63.63%). However, the isolates were highly sensitive to chloramphenicol (90.90%), followed by tetracycline (63.63%), and ampicillin (54.54%). Conclusion: This study showed that M. haemolytica and P. multocida are the common causes of mannheimiosis and pasteurellosis in small ruminants, respectively, and isolates were resistant to commonly used antibiotics in the study area. Thus, an integrated vaccination strategy, antimicrobial resistance monitoring, and avoidance of stress-inducing factors are recommended.


Assuntos
Antibacterianos , Cabras , Mannheimia haemolytica , Testes de Sensibilidade Microbiana , Pasteurella multocida , Doenças dos Ovinos , Animais , Pasteurella multocida/efeitos dos fármacos , Pasteurella multocida/isolamento & purificação , Mannheimia haemolytica/efeitos dos fármacos , Mannheimia haemolytica/isolamento & purificação , Etiópia/epidemiologia , Ovinos/microbiologia , Cabras/microbiologia , Antibacterianos/farmacologia , Estudos Transversais , Doenças dos Ovinos/microbiologia , Doenças dos Ovinos/epidemiologia , Doenças das Cabras/microbiologia , Doenças das Cabras/epidemiologia , Prevalência , Fatores de Risco , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/epidemiologia
3.
Vet Res ; 55(1): 46, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589976

RESUMO

Pasteurella multocida is an important zoonotic respiratory pathogen capable of infecting a diverse range of hosts, including humans, farm animals, and wild animals. However, the precise mechanisms by which P. multocida compromises the pulmonary integrity of mammals and subsequently induces systemic infection remain largely unexplored. In this study, based on mouse and rabbit models, we found that P. multocida causes not only lung damage but also bacteremia due to the loss of lung integrity. Furthermore, we demonstrated that bacteremia is an important aspect of P. multocida pathogenesis, as evidenced by the observed multiorgan damage and systemic inflammation, and ultimately found that this systemic infection leads to a cytokine storm that can be mitigated by IL-6-neutralizing antibodies. As a result, we divided the pathogenesis of P. multocida into two phases: the pulmonary infection phase and the systemic infection phase. Based on unbiased RNA-seq data, we discovered that P. multocida-induced apoptosis leads to the loss of pulmonary epithelial integrity. These findings have been validated in both TC-1 murine lung epithelial cells and the lungs of model mice. Conversely, the administration of Ac-DEVD-CHO, an apoptosis inhibitor, effectively restored pulmonary epithelial integrity, significantly mitigated lung damage, inhibited bacteremia, attenuated the cytokine storm, and reduced mortality in mouse models. At the molecular level, we demonstrated that the FAK-AKT-FOXO1 axis is involved in P. multocida-induced lung epithelial cell apoptosis in both cells and animals. Thus, our research provides crucial information with regard to the pathogenesis of P. multocida as well as potential treatment options for this and other respiratory bacterial diseases.


Assuntos
Bacteriemia , Infecções por Pasteurella , Pasteurella multocida , Doenças dos Roedores , Humanos , Animais , Coelhos , Camundongos , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/microbiologia , Proteínas Proto-Oncogênicas c-akt , Síndrome da Liberação de Citocina/patologia , Síndrome da Liberação de Citocina/veterinária , Pulmão/patologia , Bacteriemia/veterinária , Bacteriemia/patologia , Apoptose , Mamíferos , Proteína Forkhead Box O1
4.
Vet Med Sci ; 10(3): e1424, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38519838

RESUMO

BACKGROUND: Companion animals, including dogs and cats, are frequently identified as sources of Pasteurella multocida, a bacterium that can be transmitted to humans and cause infections. OBJECTIVES: This survey defines the prevalence, antibiotic sensitivity, capsular types, lipopolysaccharide (LPS) types and virulence factors of P. multocida isolated from cats. METHODS: A total of 100 specimens from various cat breeds were collected. P. multocida was characterized using both biochemical tests and PCR. Genotypes of isolates were determined using capsular and LPS typing methods. Additionally, virulotyping was performed by detecting the presence of 12 virulence-associated genes. Disk diffusion was used to determine the antibiotic sensitivity of the isolates. RESULTS: The prevalence of P. multocida in cats was 29%. Among the isolates, the majority were capsular type A (96.5%) and type D (3.4%), with a predominant presence of type A. Twenty-six of the isolates (89.66%) belonged to LPS genotype L6, whereas three isolates (10.3%) belonged to genotype L3. Among the 12 virulence genes examined, sodC, oma87, ptfA, nanB and ompH showed remarkable prevalence (100%). The toxA gene was detected in four isolates (13.8%). Variations were observed in other virulence genes. The nanH gene was present in 93.1% of the isolates, whereas the pfhA gene was detected in 58.6% of the isolates. The exbD-tonB, hgbB, sodA and hgbA genes showed prevalence rates of 96.5%, 96.5%, 96.5% and 82.8%, respectively. Additionally, particular capsule and LPS types were associated with specific virulence genes. Specifically, the toxA and pfhA genes were found to be more prevalent in isolates with capsular type A and LPS genotype L6. Most isolates were resistant to ampicillin, clindamycin, lincomycin, streptomycin and penicillin. CONCLUSIONS: According to this epidemiological and molecular data, P. multocida from cats possess several virulence-associated genes and are resistant to antimicrobial medicines commonly used in humans and animals. Thus, it is crucial to consider the public health concerns of P. multocida in humans.


Assuntos
Doenças do Gato , Doenças do Cão , Infecções por Pasteurella , Pasteurella multocida , Gatos , Animais , Humanos , Cães , Pasteurella multocida/genética , Infecções por Pasteurella/epidemiologia , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/microbiologia , Antibacterianos/farmacologia , Lipopolissacarídeos , Doenças do Gato/epidemiologia
5.
Vet Microbiol ; 290: 109990, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228079

RESUMO

The bacterial agent that causes fowl cholera, Pasteurella multocida, was isolated from two deceased wild waterbirds in Victoria, Australia, in 2013. Whole genome sequence analysis placed the isolates into ST20, a subtype described in farmed chickens from Queensland, Australia and more recently in feedlot cattle and in pigs across a broader area of the continent. This study also found ST20 between 2009 and 2022 on three chicken farms and two turkey farms located in four Australian states. The sequences of 25 of these ST20 isolates were compared to 280 P. multocida genomes from 23 countries and to 94 ST20 Illumina datasets from Queensland that have been deposited in public databases. The ST20 isolates formed a single phylogenetic clade and were clustered into four sub-groups with highly similar genomes, possessing either LPS type 1 or type 3 loci. Various repertoires of mobile genetic elements were present in isolates from farmed, but not wild birds, suggesting complex histories of spill-over between avian populations and gene acquisition within farm environments. No major antimicrobial resistance was predicted in any of the ST20 isolates by the genomic analysis. The closest relative of these isolates was a ST394 bovine respiratory tract isolate from Queensland, which differed from ST20 by only one allele and carried beta-lactam and tetracycline resistance genes. These findings underline the importance of understanding the role of wild and commercial birds in the maintenance of fowl cholera, and of implementing regular epidemiological surveillance and biosecurity management programmes in wildlife, as well as free-range poultry farms.


Assuntos
Doenças dos Bovinos , Cólera , Infecções por Pasteurella , Pasteurella multocida , Doenças das Aves Domésticas , Doenças dos Suínos , Animais , Bovinos , Suínos , Aves Domésticas , Fazendas , Galinhas , Filogenia , Cólera/veterinária , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/microbiologia , Infecções por Pasteurella/epidemiologia , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/microbiologia , Animais Selvagens , Vitória
6.
Rev Med Chil ; 151(1): 120-124, 2023 Feb.
Artigo em Espanhol | MEDLINE | ID: mdl-37906753

RESUMO

Pasteurella multocida is a gram-negative coccobacillus bacterium found as a commensal in the oropharynx of domestic animals such as cats and dogs and some farm animals. Soft tissue infections and occasionally bacteremia in immunocompromised patients with direct contact with animals are described. We report a 61 year old male with a history of scratches and close contact with domestic cats, with a septic shock originating from a pulmonary focus, requiring mechanical ventilation and vasopressors. Blood cultures disclosed the presence of Pasteurella multocida. He responded successfully to antimicrobials.


Assuntos
Bacteriemia , Infecções por Pasteurella , Pasteurella multocida , Choque Séptico , Animais , Gatos , Humanos , Masculino , Pessoa de Meia-Idade , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Infecções por Pasteurella/etiologia , Infecções por Pasteurella/microbiologia
7.
Microb Pathog ; 185: 106398, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852551

RESUMO

Pasteurella multocida, a Gram-negative zoonotic bacterial pathogen, interacts with the host environment, immune response, and infection through outer membrane proteins, adhesins, and sialic acid binding proteins. Sialic acids provide nutrition and mask bacterial identity, hindering the complement system, facilitates tissue access and biofilm formation. Sialic acid binding protein (SAB) enable adhesion to host cells, immune evasion, and nutrient acquisition, making them potential targets for preventing Pasteurella multocida infections. In this study, in silico molecular docking assessed 11 antibiotics targeting SAB (4MMP) comparing their docking scores to Amoxicillin. As SAB (4MMP) exhibits a highly conserved sequence in various Pasteurella multocida strains, including the specific strain PMR212 studied in this article, with a 96.09% similarity score. Aztreonam and Gentamicin displayed the highest docking scores (-6.025 and -5.718), followed by a 100ns molecular dynamics simulation. Aztreonam exhibited stable simulation with protein RMSD fluctuations of 1.8-2.2 Å. The ligand initially had an RMSD of 1.6 Å, stabilizing at 4.8 Å. Antibiotic sensitivity testing confirmed Aztreonam's efficacy with the largest inhibition zone of 42 mm, while Amoxicillin and Gentamicin had inhibition zones of 32 mm and 25 mm, respectively. According to CLSI guidelines, all three antibiotics were effective against Pasteurella multocida. Aztreonam's superior efficacy positions it as a promising candidate for further investigation in targeting Pasteurella multocida.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Humanos , Antibacterianos/metabolismo , Aztreonam/farmacologia , Aztreonam/metabolismo , Infecções por Pasteurella/microbiologia , Ácido N-Acetilneuramínico/metabolismo , Simulação de Acoplamento Molecular , Amoxicilina/farmacologia , Gentamicinas/farmacologia
8.
Vet Res ; 54(1): 91, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845774

RESUMO

The microbiota in humans and animals play crucial roles in defense against pathogens and offer a promising natural source for immunomodulatory products. However, the development of physiologically relevant model systems and protocols for testing such products remains challenging. In this study, we present an experimental condition where various natural products derived from the registered lactic acid bacteria Ligilactobacillus salivarius CECT 9609, known for their immunomodulatory activity, were tested. These products included live and inactivated bacteria, as well as fermentation products at different concentrations and culture times. Using our established model system, we observed no morphological changes in the airway epithelium upon exposure to Pasteurella multocida, a common respiratory pathogen. However, early molecular changes associated with the innate immune response were detected through transcript analysis. By employing diverse methodologies ranging from microscopy to next-generation sequencing (NGS), we characterized the interaction of these natural products with the airway epithelium and their potential beneficial effects in the presence of P. multocida infection. In particular, our discovery highlights that among all Ligilactobacillus salivarius CECT 9609 products tested, only inactivated cells preserve the conformation and morphology of respiratory epithelial cells, while also reversing or altering the natural immune responses triggered by Pasteurella multocida. These findings lay the groundwork for further exploration into the protective role of these bacteria and their derivatives.


Assuntos
Produtos Biológicos , Ligilactobacillus salivarius , Infecções por Pasteurella , Pasteurella multocida , Humanos , Animais , Imunidade Inata , Células Epiteliais , Produtos Biológicos/farmacologia , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/veterinária
9.
Lett Appl Microbiol ; 76(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37796828

RESUMO

Pasteurella multocida is widely distributed in all pig-rearing countries, affecting the economic viability and profitability of pig production. The present research highlights the molecular characterization and pathology of untypeable capsular serotypes of P. multocida in slaughtered pigs from prominent pig-rearing states of India. The prevalence of Pasteurellosis was 27.17% by Pasteurella multocida specific Pasteurella multocida specific PCR (PM-PCR). assay, while isolation rate was 7.62%. The microscopic lesions of bronchopneumonia, tonsillitis, and the presence of bacterial antigens in immunohistochemistry confirmed P. multocida with pathologies. In capsular typing, the majority of the isolates were untypeable with prevalence of 52.15% and 43.58% in molecular and microbiological methods, respectively. All the isolates showed the uniform distribution of virulence genes such as exbB, nanB, sodC, plpB, and oma87 (100%), while the variations were observed in ptfA, hasR, ptfA, pfhA, hsf-1, and plpE genes. The untypeable isolates showed higher prevalence of hsf-1 gene as compared to others. The untypeable serotypes showed a higher degree of resistance to ampicillin, amoxicillin, and penicillin antibiotics. The mouse pathogenicity testing of untypeable capsular isolates confirmed its pathogenic potential. The higher frequency of pathogenic untypeable isolates with antibiotic resistance profile might pose a serious threat to the pigs, and therefore, preventive measures should be adopted for effective control.


Assuntos
Anti-Infecciosos , Infecções por Pasteurella , Pasteurella multocida , Animais , Suínos , Camundongos , Pasteurella multocida/genética , Virulência/genética , Sorogrupo , Fatores de Virulência/genética , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/epidemiologia , Infecções por Pasteurella/microbiologia , Índia
10.
Front Cell Infect Microbiol ; 13: 1207855, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37502603

RESUMO

Objective: Pasteurella multocida is a widespread zoonotic pathogen that causes severe damage to the poultry industry. This study focused on the antibacterial effects and mechanism of action of coptisine against P. multocida. Methods: The minimum inhibitory concentration and half maximal inhibitory concentration of coptisine against P. multocida was measured. Additionally, the effect of coptisine on growth, cell wall, activity of respiratory enzymes, soluble protein content and DNA synthesis were also analyzed. Finally, the effect of coptisine on gene transcription was determined using RNA sequencing. Results: We demonstrated that coptisine has a strong antibacterial effect against P. multocida, with a minimum inhibitory concentration of 0.125 mg/mL. Moreover, the measurement of the half maximal inhibitory concentration confirmed that coptisine was safe for the pathogen. The growth curve showed that coptisine inhibited bacterial growth. Measurement of alkaline phosphatase activity in the culture solution showed that coptisine affected cell wall permeability. Transmission electron microscopy revealed that coptisine chloride destroyed the cell structure. In addition, coptisine blocked the respiratory system, as measured by the levels of critical enzymes of the tricarboxylic acid cycle and glycolysis, succinate dehydrogenase and lactate dehydrogenase, respectively. Similarly, coptisine inhibited the synthesis of soluble proteins and genomic DNA. The KEGG pathway analysis of the differentially expressed genes showed that they were associated with cellular, respiratory, and amino acid metabolism, which were downregulated after coptisine treatment. Additionally, genes related to RNA degradation and the aminoacyl-tRNA pathway were upregulated. Conclusion: In this study, we demonstrated that coptisine exerts an antibacterial effect on P. multocida. These findings suggest that coptisine has a multifaceted impact on various pathways, resulting in the inhibition of P. multocida. Thus, coptisine is a potential alternative to antibiotics for the treatment of P. multocida infections in a clinical setting.


Assuntos
Berberina , Infecções por Pasteurella , Pasteurella multocida , Humanos , Pasteurella multocida/genética , Infecções por Pasteurella/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Berberina/farmacologia
11.
Glycobiology ; 33(9): 745-754, 2023 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-37334939

RESUMO

Pasteurella multocida, an encapsulated gram-negative bacterium, is a significant veterinary pathogen. The P. multocida is classified into 5 serogroups (A, B, D, E, and F) based on the bacterial capsular polysaccharide (CPS), which is important for virulence. Serogroups B and E are the primary causative agents of bovine hemorrhagic septicemia that is associated with significant yearly losses of livestock worldwide, primarily in low- and middle-income countries. The P. multocida disease is currently managed by whole-cell vaccination, albeit with limited efficacy. CPS is an attractive antigen target for an improved vaccine: CPS-based vaccines have proven highly effective against human bacterial diseases and could provide longer-term protection against P. multocida. The recently elucidated CPS repeat units of serogroups B and E both comprise a N-acetyl-ß-D-mannosaminuronic acid/N-acetyl-ß-D-glucosamine disaccharide backbone with ß-D-fructofuranose (Fruf) side chain, but differ in their glycosidic linkages, and a glycine (Gly) side chain in serogroup B. Interestingly, the Haemophilus influenzae types e and d CPS have the same backbone residues. Here, comparative modeling of P. multocida serogroups B and E and H. influenzae types e and d CPS identifies a significant impact of small structural differences on both the chain conformation and the exposed potential antibody-binding epitopes (Ep). Further, Fruf and/or Gly side chains shield the immunogenic amino-sugar CPS backbone-a possible common strategy for immune evasion in both P. multocida and H. influenzae. As the lack of common epitopes suggests limited potential for cross-reactivity, a bivalent CPS-based vaccine may be necessary to provide adequate protection against P. multocida types B and E.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Vacinas , Animais , Bovinos , Humanos , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterinária , Polissacarídeos , Epitopos
12.
Microb Pathog ; 183: 106212, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37353176

RESUMO

Pasteurella multocida (P. multocida) is a highly infectious, zoonotic pathogen. Outer membrane protein A (OmpA) is an important virulence component of the outer membrane of P. multocida. OmpA mediates bacterial biofilm formation, eukaryotic cell infection, and immunomodulation. It is unclear how OmpA affects the host immune response. We estimated the role of OmpA in the pathogenesis of P. multocida by investigating the effect of OmpA on the immune cell transcriptome. Changes in the transcriptome of rat alveolar macrophages (NR8383) upon overexpression of P. multocida OmpA were demonstrated. A model cell line for stable transcription of OmpA was constructed by infecting NR8383 cells with OmpA-expressing lentivirus. RNA was extracted from cells and sequenced on an Illumina HiSeq platform. Key gene analysis of genes in the RNA-seq dataset were performed using various bioinformatics methods, such as gene ontology enrichment analysis, Kyoto Encyclopedia of Genes and Genomes enrichment analysis, Gene Set Enrichment Analysis, and Protein-Protein Interaction Analysis. Our findings revealed 1340 differentially expressed genes. Immune-related pathways that were significantly altered in rat alveolar macrophages under the effect of OmpA included focal adhesion, extracellular matrix and vascular endothelial growth factor signaling pathways, antigen processing and presentation, nucleotide oligomerization domain-like receptor and Toll-like receptor signaling pathways, and cytokine-cytokine receptor interaction. The key genes screened were Vegfa, Igf2r, Fabp5, P2rx1, C5ar1, Nedd4l, Gas6, Cxcl1, Pf4, Pdgfb, Thbs1, Col7a1, Vwf, Ccl9, and Arg1. Data of associated pathways and altered gene expression indicated that OmpA might cause the conversion of rat alveolar macrophages to M2-like. The related pathways and key genes can serve as a reference for OmpA of P. multitocida and host interaction mechanism studies.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Ratos , Animais , Infecções por Pasteurella/microbiologia , Fator A de Crescimento do Endotélio Vascular , Macrófagos/patologia
13.
Braz J Microbiol ; 54(3): 2445-2460, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37191868

RESUMO

Pig pasteurellosis, caused by Pasteurella multocida, is an acute infection that also has economic implications for pig farmers. We report the complete genome sequence of a P. multocida, serovar B:2 'Soron' strain isolated from the blood of a pig that had died of pasteurellosis in India. The isolate was not found to be haemorrhagic septicaemia (HS) specific B:2 by the PCR assay. The genome of 'Soron' strain is a single circular chromosome of 2,272,124 base pairs in length and contains 2014 predicted coding regions, 4 ribosomal RNA operons, and 52 tRNAs. It has 1812 protein-coding genes that were also found in reference sequence PmP52Vac. Phylogenetic analysis revealed that Pm_P52VAc and P. multocida 'Soron' serovar B:2 were clustered in different clades. Pasteurella multocida 'Soron' serovar B:2 was found to cluster with the same ancestor of Pm70, which is of avian origin. The genome was found to contain regions that encode proteins which may confer resistance to various antibiotics including cephalosporin, which is used to treat pasteurellosis. The isolate was also found to harbour a phage region. This strain represents a novel multi-locus sequence type (MLST) that has not been previously identified, as all of the alleles used for MLST were found, but did not match any of the alleles in the database with 100% nucleotide identity. The most closely related ST was ST221. This is the first whole-genome sequence from P. multocida serovar B:2 of pig origin.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Animais , Suínos , Pasteurella multocida/genética , Tipagem de Sequências Multilocus , Sorogrupo , Filogenia , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/microbiologia
14.
J Comp Pathol ; 202: 16-22, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37023584

RESUMO

Pasteurella multocida is the main secondary bacterium isolated from cases of swine pneumonia. Although highly pathogenic strains of P. multocida have been associated with primary septic lesions and polyserositis in pigs, studies on this pathological presentation in naturally occurring cases are limited. The aim of this work was to characterize the clinical, pathological and molecular findings in cases of P. multocida polyserositis in growing-finishing pigs in a commercial farm in Brazil. The mean age of 17 investigated pigs was 120 days. Clinically, the disease was acute (11/17), with clinical signs of dyspnoea and apathy. Sudden death occurred in some animals (6/17). The main gross findings included fibrinous serositis affecting the abdominal and thoracic cavities (17/17), fibrinous pericarditis (15/17), marked cranioventral pulmonary consolidation (17/17) and splenic infarcts (3/17). P. multocida was isolated in all cases from systemic sites, including the pericardial sac and abdominal exudate. Molecular typing of genus and species was performed on four isolates, and all were characterized as P. multocida type A. Another five isolates were positive for the pathogenicity marker gene pfhA by polymerase chain reaction. This study reinforces the role of P. multocida as a cause of polyserositis in growing-finishing pigs.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Doenças dos Suínos , Suínos , Animais , Pasteurella multocida/genética , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/microbiologia , Reação em Cadeia da Polimerase/veterinária , Virulência/genética , Brasil
15.
PLoS Pathog ; 19(3): e1011249, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36961851

RESUMO

Pasteurella multocida can infect a multitude of wild and domesticated animals, with infections in cattle resulting in hemorrhagic septicemia (HS) or contributing to bovine respiratory disease (BRD) complex. Current cattle vaccines against P. multocida consist of inactivated bacteria, which only offer limited and serogroup specific protection. Here, we describe a newly identified surface lipoprotein, PmSLP, that is present in nearly all annotated P. multocida strains isolated from cattle. Bovine associated variants span three of the four identified phylogenetic clusters, with PmSLP-1 and PmSLP-2 being restricted to BRD associated isolates and PmSLP-3 being restricted to isolates associated with HS. Recombinantly expressed, soluble PmSLP-1 (BRD-PmSLP) and PmSLP-3 (HS-PmSLP) vaccines were both able to provide full protection in a mouse sepsis model against the matched P. multocida strain, however no cross-protection and minimal serum IgG cross-reactivity was identified. Full protection against both challenge strains was achieved with a bivalent vaccine containing both BRD-PmSLP and HS-PmSLP, with serum IgG from immunized mice being highly reactive to both variants. Year-long stability studies with lyophilized antigen stored under various temperatures show no appreciable difference in biophysical properties or loss of efficacy in the mouse challenge model. PmSLP-1 and PmSLP-3 vaccines were each evaluated for immunogenicity in two independent cattle trials involving animals of different age ranges and breeds. In all four trials, vaccination with PmSLP resulted in an increase in antigen specific serum IgG over baseline. In a blinded cattle challenge study with a recently isolated HS strain, the matched HS-PmSLP vaccine showed strong efficacy (75-87.5% survival compared to 0% in the control group). Together, these data suggest that cattle vaccines composed of PmSLP antigens can be a practical and effective solution for preventing HS and BRD related P. multocida infections.


Assuntos
Septicemia Hemorrágica , Infecções por Pasteurella , Pasteurella multocida , Bovinos , Animais , Camundongos , Filogenia , Vacinologia , Vacinas Bacterianas , Septicemia Hemorrágica/microbiologia , Septicemia Hemorrágica/prevenção & controle , Septicemia Hemorrágica/veterinária , Modelos Animais de Doenças , Imunoglobulina G , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterinária
16.
Rev. méd. Chile ; 151(1): 120-124, feb. 2023. ilus, tab
Artigo em Espanhol | LILACS | ID: biblio-1515414

RESUMO

Pasteurella multocida is a gram-negative coccobacillus bacterium found as a commensal in the oropharynx of domestic animals such as cats and dogs and some farm animals. Soft tissue infections and occasionally bacteremia in immunocompromised patients with direct contact with animals are described. We report a 61 year old male with a history of scratches and close contact with domestic cats, with a septic shock originating from a pulmonary focus, requiring mechanical ventilation and vasopressors. Blood cultures disclosed the presence of Pasteurella multocida. He responded successfully to antimicrobials.


Assuntos
Humanos , Animais , Masculino , Pessoa de Meia-Idade , Gatos , Cães , Infecções por Pasteurella/etiologia , Infecções por Pasteurella/microbiologia , Choque Séptico , Pasteurella multocida , Bacteriemia/tratamento farmacológico , Imunocompetência
17.
J Microbiol Methods ; 204: 106652, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36503053

RESUMO

Haemorrhagic septicaemia (HS) is an acute infection of cattle and buffaloes caused by the B:2 serotype of Pasteurella multocida. This disease is highly endemic in South Asia. In some peracute cases, there is 100% mortality in infected animals within a few hours of infection. Therefore, timely diagnosis of infection may contribute to its treatment and control to minimize economic losses. The current work reported the development of ELISA-based assays for the detection of anti-P. multocida antibodies and pathogen i.e. P. multocida. Owing to high immunogenicity, membrane proteins (MPs) extracted from local isolates of P. multocida serotype B:2 (PM1, PM2, and PM3) were employed as a potential diagnostic antigen for the development of indirect ELISA (i-ELISA) to detect HS antibodies in animals. MPs extracted from PM1, PM2 and PM3 isolates showed very low heterogeneity; hence MPs from the PM3 isolate were selected for the development of i-ELISA. The concentration of MPs (as coating antigen) of 3.13 µg/well and test sera dilution 1:100 was found to be optimal to perform i-ELISA. The developed method was validated through the detection of anti-P. multocida antibodies in sera of mice, immunized with MPs and formalin killed cells from the three local isolates (PM1, PM2 and PM3) of P. multocida. The significantly higher antibody titer in immunized mice was determined compared to unimmunized mice with the cut off value of 0.139. To detect P. multocida directly from the blood of infected animals, whole cell-based ELISA (cb-ELISA) assay was developed. A better detection signal was observed in the assay where bacterial cells were directly adsorbed on plate wells as compared to poly L-lysine (PLL) assisted attachment at a cell concentration of 106 CFU and 107 CFU respectively. The developed assays can be scaled up and potentially be used for the rapid detection of HS antibodies to gauge the immune status of the animal as well as vaccination efficacy and pathogen detection.


Assuntos
Septicemia Hemorrágica , Infecções por Pasteurella , Pasteurella multocida , Camundongos , Animais , Bovinos , Septicemia Hemorrágica/diagnóstico , Septicemia Hemorrágica/veterinária , Soro , Ensaio de Imunoadsorção Enzimática/veterinária , Búfalos , Infecções por Pasteurella/diagnóstico , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/microbiologia
18.
BMC Microbiol ; 22(1): 272, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36368971

RESUMO

BACKGROUND: Pasteurella multocida is an opportunistic pathogen causing porcine respiratory diseases by co-infections with other bacterial and viral pathogens. Various bacterial genera isolated from porcine respiratory tracts were shown to inhibit the growth of the porcine isolates of P. multocida. However, molecular mechanisms during the interaction between P. multocida and these commensal bacteria had not been examined.  METHODS: This study aimed to investigate the interaction between two porcine isolates of P. multocida (PM2 for type D and PM7 for type A) with Aeromonas caviae selected from the previously published work by co-culturing P. multocida in the conditioned media prepared from A. caviae growth and examining transcriptomic changes using RNA sequencing and bioinformatics analysis.  RESULTS: In total, 629 differentially expressed genes were observed in the isolate with capsular type D, while 110 genes were significantly shown in type A. High expression of genes required for energy metabolisms, nutrient uptakes, and quorum sensing were keys to the growth and adaptation to the conditioned media, together with the decreased expression of those in the unurgent pathways, including translation and antibacterial resistance. CONCLUSION: This transcriptomic analysis also displayed the distinct capability of the two isolates of P. multocida and the preference of the capsular type A isolate in response to the tough environment of the A. caviae conditioned media. Therefore, controlling the environmental sensing and nutrient acquisition mechanisms of P. multocida would possibly prevent the overpopulation of these bacteria and reduce the chance of becoming opportunistic pathogens.


Assuntos
Aeromonas caviae , Infecções por Pasteurella , Pasteurella multocida , Doenças dos Suínos , Suínos , Animais , Pasteurella multocida/genética , Infecções por Pasteurella/microbiologia , Aeromonas caviae/genética , Meios de Cultivo Condicionados/farmacologia , Transcriptoma , Doenças dos Suínos/microbiologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-36306714

RESUMO

Pasteurella multocida, the causative pathogen of rabbit pasteurellosis, causes significant economic losses in the commercial rabbit industry. However, the associated pathogenic mechanism of P. multocida remains unclear. The aim of this study is to compare the genomes and pathogenicity of high- and low-virulence strains of P. multocida to advance the current understanding of rabbit pasteurellosis. The high-virulence strain rapidly proliferates in the lung and spleen of infected mice within approximately 9 h, maintaining a high bacterial load until host death. Meanwhile, the low-virulence strain only proliferates in mouse organs for a short time, with the bacterial load beginning to decrease 13 h post-infection. Moreover, the expressions of inflammatory cytokines MCP-1, TNF-α, and IL-1ß are upregulated in all infected mouse lung and spleen tissue, however, the high-virulence strain induced significantly higher expression than the low-virulence strain. Histopathological analysis revealed greater inflammation and tissue lesions in the lung and spleen of mice infected with the high-virulence strain. Two pathogenicity-associated regions unique to the genome of the high-virulence strain harbor approximately 199 genes, including functional genes related to virulence factors, such as lipopolysaccharide biosynthesis, iron acquisition, biosynthesis of outer membrane proteins, and adhesion. These two genomic regions are shared by three previously sequenced, highly virulent P. multocida strains in rabbits. In conclusion, the increased pathogenicity of high-virulence P. multocida may be due to the presence of virulence-associated genes in two unique genomic regions, resulting in strong proliferative activity, significant inflammation, and pathological lesions in the mouse model. These findings provide important insights regarding the pathogenic mechanism underlying rabbit pasteurellosis.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Doenças dos Roedores , Coelhos , Camundongos , Animais , Pasteurella multocida/genética , Virulência/genética , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/veterinária , Fatores de Virulência/genética , Inflamação/veterinária
20.
Braz J Microbiol ; 53(4): 2299-2307, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35922692

RESUMO

Swine pasteurellosis is one of the most economically important diseases of pig caused by Pasteurella multocida (P. multocida) capsular types A and D. These organisms are commensals and opportunistic pathogens in the upper respiratory tract in pig. In the present study, we extracted whole outer membrane proteins (OMP) from P. multocida capsular types A and D and were mixed together in the ratio of 1:1 forming bivalent outer-membrane proteins. The bivalent OMP was adsorbed onto aluminum hydroxide nanoparticles. The size of aluminum hydroxide nanoparticles adsorbed outer membrane protein was found to be in the range of 125 to 130 nm. We observed that aluminum hydroxide nanoparticles adjuvanted bivalent OMP-based vaccine elicited quicker immune kinetics in terms of IgG response as compared to aluminum hydroxide microparticles adjuvanted bivalent bacterin vaccine against P. multocida capsular type A and D.


Assuntos
Nanopartículas , Infecções por Pasteurella , Pasteurella multocida , Suínos , Animais , Hidróxido de Alumínio , Vacinas Combinadas , Proteínas da Membrana Bacteriana Externa , Infecções por Pasteurella/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...